Click chemistry creates new 'stealth' DNA links

Scientists at the University of Southampton have pioneered a chemical method of linking DNA strands that is tolerated by living organisms.

The researchers have developed an artificial DNA "stealth" linkage using click chemistry, a highly-efficient chemical reaction, to join together DNA strands without disrupting the genetic code.

The breakthrough, published online in the journal PNAS this week (27 June), means long sections of DNA can be created quickly and efficiently by chemical methods.

DNA strands are widely used in biological and medical research, and clean and effective methods of making longer sections are of great value. Current techniques rely on the use of enzymes as biological catalysts. Joining DNA chemically is particularly interesting as it does not depend on enzymes so can be carried out on a large scale under a variety of conditions.

Co-author of the paper Tom Brown, Professor of Chemical Biology at the University of Southampton, says, "We believe this is the first example of a chemical method of joining together longer strands of DNA that works well.

"Typically, synthesised DNA strands will be up to 150 bases; beyond that they are very difficult to make. We have doubled that to 300 and we can go further. We can also join together heavily modified DNA strands, used in medical research for example, which normal enzymes might not want to couple together."