How dietary fibre helps the intestines maintain health

12 Aug 2017

1

Health researchers at University of California's at Davis have discovered how by-products of the digestion of dietary fibre by gut microbes act as the right fuel to help intestinal cells maintain gut health.

The research, published 11 August in the journal Science, is important because it identifies a potential therapeutic target for rebalancing gut microbiota and adds to a growing body of knowledge on the complex interplay between gut microbiota and dietary fiber.

An accompanying Insights / Perspectives article in the same issue of the journal describes gut microbes as "partners" in the body's defence against potential infectious agents, such as Salmonella.

"Our research suggests that one of the best approaches to maintaining gut health might be to feed the beneficial microbes in our intestines dietary fibre, their preferred source of sustenance," says Andreas Bäumler, professor of medical microbiology and immunology at UC Davis Health and senior author of the study.

"While it is known that the gut is the site of constant turf wars between microbes, our research suggests that signals generated by beneficial microbes drive the intestinal tract to limit resources that could lead to an expansion of potentially harmful microbes," he said.

Resident gut microbes metabolise indigestible dietary fibre to produce short-chain fatty acids, which signal cells lining the large bowel to maximise oxygen consumption, thereby limiting the amount of oxygen diffusing into the gut lumen (the open space within the intestine that comes into direct contact with digested food.)

"Interestingly, the beneficial gut bacteria that are able to breakdown fibre don't survive in an environment rich in oxygen, which means that our microbiota and intestinal cells work together to promote a virtuous cycle that maintains gut health," says Mariana X. Byndloss, assistant project scientist and first author on the study.

The new research identified the host receptor peroxisome proliferator receptor gamma (PPARg) as the regulator responsible for maintaining this cycle of protection.

"When this host signalling pathway malfunctions, it leads to increased oxygen levels in the gut lumen," Bäumler says. "These higher oxygen levels make us more susceptible to aerobic enteric pathogens such as Salmonella or Escherichia coli, which use oxygen to edge out competing beneficial microbes."

Latest articles

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

Toyota set for third straight quarterly profit drop as costs and tariffs weigh

Toyota set for third straight quarterly profit drop as costs and tariffs weigh