Inflammatory response to ceramic scaffolds promotes bone regeneration

01 Aug 2016

1

In their mission to design new biomaterials that promote tissue regeneration, Drexel University researchers have identified how inflammation, when precisely controlled, is crucial to bone repair.

Their findings, published this week in the Journal of the Royal Society Interface, show that a new type of ceramic scaffold causes inflammatory cells to behave in a way that is more regenerative than scaffolds that are currently used clinically.

Critical-size bone defects - due to tumour removals, gunshot wounds and other traumatic injuries - cannot heal on their own, so scientists are searching for the perfect combination of material and mechanism that will guide the growth of new tissue.

"Your cells can't swim. Any time you have a large piece of bone missing, a scaffold is needed to close that gap," says Kara Spiller, PhD, an associate professor in the School of Biomedical Engineering, Science and Health Systems.

Spiller's collaborators at the University of Sydney in Australia recently designed new ceramic scaffolds that promoted bone regeneration in animals, although the researchers did not know why these particular biomaterials thrived.

The Drexel research team suspected that the scaffolds' favourable outcomes must be attributed to macrophages -- swallowing white blood cells that digest foreign particles.

Macrophages are the primary cells of the inflammatory response and can rapidly change their behaviors in response to the environment.

When the inflammatory response is working properly, it can promote tissue repair, but when gone awry, it can lead to disease. The challenge for the Drexel researchers is to uncover which macrophage phenotype best advances tissue growth, without damaging the healing process.

"We wanted to know why these scaffolds were successful and to understand the contributions of macrophages to that process," Spiller says. "Once you understand those mechanisms, you can apply the information to regenerate other types of tissue besides bone."

After deriving macrophages from monocytes (another type of white blood cell), the researchers seeded the cells on to three different types of scaffolds and evaluated the differences in their gene expression after several days.

Then, to determine if the macrophage behaviour was dependent on the release of soluble factors from the scaffold, they compared the cells in direct contact with those that were separated from the scaffold with a membrane.

The researchers found the new ceramic scaffolds caused macrophages to transform into an M2c phenotype, meaning they express genes associated with remodeling.

This behaviour was not seen in the scaffolds that have been approved to be used in humans. Their findings also showed that macrophages must be in direct contact with the scaffold in order to regenerate tissue.

"The macrophages degrade the scaffolds and shape them into something new," Spiller said. "And that's the Holy Grail of tissue engineering -- that you make a scaffold that replaces itself with healthy tissue."

Beyond their primary results, the study also showed that analysing the behaviour of human cells outside of the body is a successful way to investigate the effectiveness of various biomaterials.

"It looks like studying cells in a petri dish is useful for seeing what happens in the body," Spiller says. "Animal studies are expensive, time-consuming and don't use human cells, so being able to study human cells in vitro is important."

Next the researchers will try to uncover what about the ceramic scaffolds in particular -- whether their composition, texture or something else -- promotes the appropriate macrophage behaviour and subsequent bone regeneration.

Spiller said determining why certain scaffolds are successful in re-growing bone will ultimately help biomedical engineers design other types of scaffolds and new drug delivery strategies to promote healing in other areas of the body.

Latest articles

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

Toyota set for third straight quarterly profit drop as costs and tariffs weigh

Toyota set for third straight quarterly profit drop as costs and tariffs weigh