More reports on: Nanotechnology
Target: Drug-resistant bacteria news
04 May 2012

Over the past several decades, scientists have faced challenges in developing new antibiotics even as bacteria have become increasingly resistant to existing drugs. One strategy that might combat such resistance would be to overwhelm bacterial defences by using highly targeted nanoparticles to deliver large doses of existing antibiotics.

In a step toward that goal, researchers at MIT and Brigham and Women's Hospital have developed a nanoparticle designed to evade the immune system and home in on infection sites, then unleash a focused antibiotic attack.

This approach would mitigate the side effects of some antibiotics and protect the beneficial bacteria that normally live inside our bodies, says Aleks Radovic-Moreno, an MIT graduate student and lead author of a paper describing the particles in the journal ACS Nano.

Institute Professor Robert Langer of MIT and Omid Farokzhad, director of the Laboratory of Nanomedicine and Biomaterials at Brigham and Women's Hospital, are senior authors of the paper. Timothy Lu, an assistant professor of electrical engineering and computer science, and MIT undergraduates Vlad Puscasu and Christopher Yoon also contributed to the research.

Rules of attraction

The team created the new nanoparticles from a polymer capped with polyethylene glycol (PEG), which is commonly used for drug delivery because it is nontoxic and can help nanoparticles travel through the bloodstream by evading detection by the immune system.





 search domain-b
  go
 
Target: Drug-resistant bacteria