U-M researchers solve a molecular mystery in muscle

The muscle-building abilities of hormones known as insulin-like growth factors (IGFs) are legendary. Just do an online search and you'll find not only scientific papers discussing the effects of IGFs on the cells that give rise to muscle tissue, but also scores of ads touting the purported benefits of IGF supplements for bodybuilding.

But in spite of widespread interest in these potent molecules, key details about how IGFs work on muscle cells have been lacking.

Now, research by a team led by University of Michigan molecular biologist Cunming Duan has cleared up a longstanding mystery about the workings of IGFs.

The team's findings, scheduled to be published online this week in the Proceedings of the National Academy of Sciences, could lead to new treatments for muscle-wasting diseases and new ways of preventing the muscle loss that accompanies aging.

And because IGFs also are implicated in the growth and spread of malignant tumors, the new insights may have implications in cancer biology.

Like other peptide and protein hormones, IGFs work by binding to receptors on the cells they target. The binding then sets off a cascade of reactions that ultimately direct the cell to do something. You might think that a given hormone, binding to a particular receptor, would always elicit the same response from the cell, but that's not what happens in the case of IGF and myoblasts (immature cells that develop into muscle tissue).