Discovery may help prevent HIV

18 Apr 2013

1

Researchers at Albert Einstein College of Medicine of Yeshiva University have discovered how the protein that blocks HIV-1 from multiplying in white blood cells is regulated.

HIV-1 is the virus that causes AIDS, and the discovery could lead to novel approaches for addressing HIV-1 "in hiding" – namely eliminating reservoirs of HIV-1 that persist in patients undergoing antiretroviral therapy. The study was published yesterday in the online edition of the journal Cell Host & Microbe.

Antiretroviral therapy can reduce blood levels of HIV-1 until they are undetectable. But despite drug therapy, reservoirs of HIV-1 can persist in several types of white cells, notably macrophages – important immune cells that help clear pathogens and other potentially harmful substances from the body.

"If you stop antiretroviral therapy, the virus emerges from these reservoirs and returns to the general circulation in a matter of days, as if the patient had never been treated," said senior author Felipe Diaz-Griffero, PhD, assistant professor of microbiology and immunology at Einstein. "Now we know the protein that we need to control so we can prevent HIV-1 reservoirs from forming or eliminate them entirely."

Scientists have known that a protein called SAMHD1 prevents HIV-1 from replicating in certain immune cells. But until now, it was not understood why SAMHD1 fails to function in immune cells like macrophages that are vulnerable to HIV-1 infection.

Using mass spectrometry, a tool for determining molecular composition, Dr Diaz-Griffero found that SAMHD1 can exist in two configurations known as phosphorylated and unphosphorylated.

Phosphorylation is an important cellular process in which phosphate groups attach to other molecules, thereby activating various signaling and regulatory mechanisms within the cell. When SAMHD1 is phosphorylated – the situation in immune cells that divide – the cell is not protected from being infected with HIV-1. When the protein is not phosphorylated – as occurs in the nondividing macrophages – the cell is protected from HIV infection.

"We are currently exploring ways to keep this protein unphosphorylated so that HIV reservoirs will never be formed," said Dr. Diaz-Griffero.

Latest articles

The silicon-rich AI race: how Cisco’s G300 puts networking at the center of compute

The silicon-rich AI race: how Cisco’s G300 puts networking at the center of compute

Silver jumps nearly Rs 7,000/kg; gold rises Rs 1,600 as weak US retail data boosts rate-cut bets

Silver jumps nearly Rs 7,000/kg; gold rises Rs 1,600 as weak US retail data boosts rate-cut bets

Goldman Sachs doubles down on India, climbs Wall Street rankings in crowded deal market

Goldman Sachs doubles down on India, climbs Wall Street rankings in crowded deal market

Rahul Gandhi criticises India–US trade deal as tariffs on Indian goods rise to 18%

Rahul Gandhi criticises India–US trade deal as tariffs on Indian goods rise to 18%

MPS Board Member and Senior Treasury Official Resigns Amid Insider Trading Probe

MPS Board Member and Senior Treasury Official Resigns Amid Insider Trading Probe

Eutelsat Secures €1 Billion Financing for OneWeb Satellite Procurement

Eutelsat Secures €1 Billion Financing for OneWeb Satellite Procurement

Tencent, Tesla Team Up on WeChat-Linked In-Car Features in China

Tencent, Tesla Team Up on WeChat-Linked In-Car Features in China

Australia presses Roblox over child safety concerns, regulator signals possible fines

Australia presses Roblox over child safety concerns, regulator signals possible fines

Cisco Unveils AI Networking Chip to Strengthen Position in Data Centre Boom

Cisco Unveils AI Networking Chip to Strengthen Position in Data Centre Boom