3D bioprinting technique could create artificial blood vessels, organ tissue

23 Oct 2018

1

University of Colorado (CU) Boulder engineers have developed a 3D printing technique that allows for localised control of an object's firmness, opening up new biomedical avenues that could one day include artificial arteries and organ tissue.

The study, which was recently published in the journal Nature Communications, outlines a layer-by-layer printing method that features fine-grain, programmable control over rigidity, allowing researchers to mimic the complex geometry of blood vessels that are highly structured and yet must remain pliable.
The findings could one day lead to better, more personalised treatments for those suffering from hypertension and other vascular diseases.
"The idea was to add independent mechanical properties to 3D structures that can mimic the body's natural tissue," says Xiaobo Yin, an associate professor in CU Boulder's Department of Mechanical Engineering and the senior author of the study. "This technology allows us to create microstructures that can be customized for disease models."
Hardened blood vessels are associated with cardiovascular disease, but engineering a solution for viable artery and tissue replacement has historically proven challenging.
To overcome these hurdles, the researchers found a unique way to take advantage of oxygen's role in setting the final form of a 3D-printed structure.
"Oxygen is usually a bad thing in that it causes incomplete curing," says Yonghui Ding, a post-doctoral researcher in Mechanical Engineering and the lead author of the study. "Here, we utilise a layer that allows a fixed rate of oxygen permeation."
By keeping tight control over oxygen migration and its subsequent light exposure, Ding said, the researchers have the freedom to control which areas of an object are solidified to be harder or softer--all while keeping the overall geometry the same.
"This is a profound development and an encouraging first step toward our goal of creating structures that function like a healthy cell should function," Ding said.
As a demonstration, the researchers printed three versions of a simple structure: a top beam supported by two rods. The structures were identical in shape, size and materials, but had been printed with three variations in rod rigidity: soft / soft, hard / soft and hard / hard. The harder rods supported the top beam while the softer rods allowed it to fully or partially collapse.
The researchers repeated the feat with a small Chinese warrior figure, printing it so that the outer layers remained hard while the interior remained soft, leaving the warrior with a tough exterior and a tender heart, so to speak.
The tabletop-sized printer is currently capable of working with biomaterials down to a size of 10 microns, or about one-tenth the width of a human hair. The researchers are optimistic that future studies will help improve the capabilities even further.
"The challenge is to create an even finer scale for the chemical reactions," said Yin. "But we see tremendous opportunity ahead for this technology and the potential for artificial tissue fabrication."

Latest articles

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Global Chip Sales Expected to Hit $1 Trillion This Year, Industry Group Says

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Citi to Match Government Seed Funding for Children’s ‘Trump Accounts’

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

Huawei-Backed Aito Partners With UAE Dealer to Enter Middle East Market

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

AI is No Bubble: Nvidia Supplier Wistron Sees Order Surge Through 2027

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Tech Selloff Weighs on Asian Markets; Indonesia Slides After Moody’s Outlook Cut

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Amazon Plans $200 Billion AI Spending Surge; Shares Slide on Investor Jitters

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

Server CPU Shortages Grip China as AI Boom Strains Intel and AMD Supply Chains

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

OpenAI launches ‘Frontier’ AI agent platform in enterprise push

Toyota set for third straight quarterly profit drop as costs and tariffs weigh

Toyota set for third straight quarterly profit drop as costs and tariffs weigh