Cancer device created at Rutgers to see if targeted chemotherapy is working

17 Jul 2019

1

Rutgers researchers have created a device that can determine whether targeted chemotherapy drugs are working on individual cancer patients.

The portable device, which uses artificial intelligence and biosensors, is up to 95.9 per cent accurate in counting live cancer cells when they pass through electrodes, according to a study in the journal Microsystems & Nanoengineering.
"We built a portable platform that can predict whether patients will respond positively to targeted cancer therapy," says senior author Mehdi Javanmard, an assistant professor in the Department of Electrical and Computer Engineering in the School of Engineering at Rutgers University-New Brunswick. "Our technology combines artificial intelligence and sophisticated biosensors that handle tiny amounts of fluids to see if cancer cells are sensitive or resistant to chemotherapy drugs."
The device provides immediate results and will allow for more personalised interventions for patients as well as better management and detection of the disease. It can rapidly analyze cells without having to stain them, allowing for further molecular analysis and instantaneous results. Current devices rely on staining, limiting the characterization of cells.
"We envision using this new device as a point-of-care diagnostic tool for assessing patient response and personalisation of therapeutics," the study says.
Treatment of cancer patients often requires drugs that can kill tumor cells, but chemotherapy destroys both tumour cells and healthy cells, causing side effects such as hair loss and gastrointestinal problems.
Co-author Joseph R. Bertino, a resident researcher at Rutgers Cancer Institute of New Jersey and professor at Rutgers Robert Wood Johnson Medical School, and his team previously developed a therapeutic approach that targets cancer cells, such as those in B-cell lymphoma, multiple myeloma and epithelial carcinomas. It binds a chemotherapy drug to an antibody so only tumour cells are targeted, and minimises interaction with healthy cells. Patients will respond positively to this therapy if their tumour cells generate a protein called matriptase. Many patients will benefit while the side effects from standard chemotherapy are minimised.
"Novel technologies like this can really have a positive impact on the standard-of-care and result in cost-savings for both healthcare providers and patients," Bertino said.
The Rutgers team tested their new device using cancer cell samples treated with different concentrations of a targeted anti­cancer drug. The device detects whether a cell is alive based on the shift in its electrical properties as it passes through a tiny fluidic hole. The next step is to perform tests on tumor samples from patients. The researchers hope the device will eventually be used to test cancer therapies on samples of patient tumors before treatment is administered.

Latest articles

Nigeria and South Africa drive global stablecoin demand surge, study finds

Nigeria and South Africa drive global stablecoin demand surge, study finds

Cisco and Qunnect test real-world quantum network over New York fiber cables

Cisco and Qunnect test real-world quantum network over New York fiber cables

Uber to invest $100 million+ in autonomous charging hubs to accelerate robotaxi rollout

Uber to invest $100 million+ in autonomous charging hubs to accelerate robotaxi rollout

The $250 billion pivot: how 2026 became the year AI paid the rent

The $250 billion pivot: how 2026 became the year AI paid the rent

Sweden fines SBB over accounting violations, raising scrutiny on property sector

Sweden fines SBB over accounting violations, raising scrutiny on property sector

Ukraine-Russia peace talks enter second day in Geneva amid pressure concerns

Ukraine-Russia peace talks enter second day in Geneva amid pressure concerns

India asks university to exit AI summit after robot’s origin questioned

India asks university to exit AI summit after robot’s origin questioned

Redmond’s global reach: Microsoft on pace for $50 billion AI investment in the Global South

Redmond’s global reach: Microsoft on pace for $50 billion AI investment in the Global South

Data centres explore funding uranium projects as AI power demand surges, says NexGen CEO

Data centres explore funding uranium projects as AI power demand surges, says NexGen CEO