Nano pores help boost enzymatic activity news
09 April 2011

Rensselaer researchers confined lysozyme and other enzymes inside carefully engineered nanoscale holes. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

 
Rensselaer researchers confined lysozyme and other enzymes inside carefully engineered nanoscale holes. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.

Proteins are critically important to life and the human body. They are also among the most complex molecules in nature, and there is much we still don't know or understand about them.

One key challenge is the stability of enzymes, a particular type of protein that speeds up, or catalyses, chemical reactions. Taken out of their natural environment in the cell or body, enzymes can quickly lose their shape and denature.

Everyday examples of enzymes denaturing include milk going sour, or eggs turning solid when boiled.

Rensselaer Polytechnic Institute Professor Marc-Olivier Coppens has developed a new technique for boosting the stability of enzymes, making them useful under a much broader range of conditions.

Coppens confined lysozyme and other enzymes inside carefully engineered nanoscale holes, or nanopores. Instead of denaturing, these embedded enzymes mostly retained their 3-D structure and exhibited a significant increase in activity.





 search domain-b
  go
 
Nano pores help boost enzymatic activity