System automatically detects cracks in nuclear power plants

20 Feb 2017

1

A new automated system detects cracks in the steel components of nuclear power plants and has been shown to be more accurate than other automated systems.

"Periodic inspection of the components of nuclear power plants is important to avoid accidents and ensure safe operation," said Mohammad R Jahanshahi, an assistant professor in Purdue University's Lyles School of Civil Engineering. "However, current inspection practices are time consuming, tedious and subjective because they involve an operator manually locating cracks in metallic surfaces."

Other automatic crack detection algorithms under development often do not detect cracks in metallic surfaces because the cracks are usually small, have low contrast and are difficult to distinguish from welds, scratches and grind marks.

The new system, called CRAQ, for crack recognition and quantification, overcomes this limitation by using an advanced algorithm and a powerful "machine learning" technique to detect cracks based on the changing texture surrounding cracks on steel surfaces.

Findings are detailed in a research paper published this week in Computer-Aided Civil and Infrastructure Engineering.

The automated approach could help improve the state of the nation's infrastructure, recently given an overall grade of D+ by the American Society of Civil Engineers, he said.

"One reason we have a grade of D+ for the infrastructure is insufficient inspection," said Jahanshahi, director of Purdue's Smart Informatix Laboratory. "So we want to have more frequent inspection using robotic systems to collect data."

The nation operates 99 commercial nuclear power plants, which account for about 20 per cent of total US electricity generation. Ageing can result in cracking, fatigue, embrittlement of metal components, wear, erosion, corrosion and oxidation.

"Cracking is an important factor in aging degradation that may cause leaking and result in hazardous incidents," Jahanshahi says. "For instance, the Millstone nuclear power station in Connecticut had an accident in 1996 that was caused by a leaking valve, and the accident cost $254 million. In 2010, the Vermont Yankee Nuclear Power Plant had an accident where deteriorating underground pipes leaked radioactive tritium into groundwater supplies, resulting in $700 million in damage."

Complicating the inspection process is that nuclear reactors are submerged in water to maintain cooling.

"Consequently, direct manual inspection of reactor internals is not feasible due to high temperatures and radiation hazards," Jahanshahi said. "So remotely recorded videos at the underwater reactor surface are used for inspection.

However, recent testing has identifed a need for increased reliability associated with identifying cracks from reviews of live and recorded data. The results indicate that this capability is degraded by human involvement in identifying cracks, even when identi?cation should be easy."

Other automated crack-detection systems under development are designed for processing single images, whereas the new method processes multiple video frames, providing more robust results. Findings show the system outperformed two others under development.

"In contrast to other methods that only focus on detecting cracks in one image, we propose a method called Bayesian data fusion that tracks detected cracks in video frames and fuses the information obtained from multiple frames," Jahanshahi said. "Moreover, we can filter out falsely detected cracks and increase the reliability and robustness of crack detection by using Bayesian decision theory," which determines the probability that an object is a crack or a false alarm.

The system assigns "confidence levels" automatically assessing whether the detected cracks are real, outlining the cracks with colour-coded boxes that correspond to these confidence levels. For example, if the algorithm assigns a high confidence level to a crack, the box outline is red. The processing procedure takes about a minute.

"Then, a technician could do a manual inspection to confirm that there is a crack," Jahanshahi said.

The research paper was authored by doctoral student Fu-Chen Chen; Jahanshahi; doctoral student Rih-Teng Wu; and Chris Joffe, technical leader for Non-destructive Evaluation at the Electric Power Research Institute (EPRI), a nonprofit organization funded by the electric utility industry.

Researchers recorded videos using an underwater camera system scanning 304 stainless steel specimens containing cracks and also features such as welds, grinding marks and scratches.

Future research will include work to develop a more accurate and more fully automated system using advanced simulations and computational software.

"We are currently working on the second version of the software by developing deep learning algorithms to detect cracks for this application where we have significantly improved the performance of the system using Constitutional Neural Networks," Jahanshahi said.

The researchers have filed a patent application through the Office of Technology Commercialisation of the Purdue Research Foundation.

Latest articles

Ford cancels $6.5 billion battery deal with LGES amid massive EV strategy reset

Ford cancels $6.5 billion battery deal with LGES amid massive EV strategy reset

Tesla opens its first charging station in Gurugram, expands India EV footprint

Tesla opens its first charging station in Gurugram, expands India EV footprint

Vedanta Aluminium expands Lanjigarh refinery to 5 MTPA, boosts India’s global rank

Vedanta Aluminium expands Lanjigarh refinery to 5 MTPA, boosts India’s global rank

Larsen & Toubro wins large orders for Omkareshwar museum and FIFA stadium

Larsen & Toubro wins large orders for Omkareshwar museum and FIFA stadium

ACME Solar commissions 52 MW of Gujarat wind project; shares rise

ACME Solar commissions 52 MW of Gujarat wind project; shares rise

Ola Electric founder clears ₹260 crore debt via stake sale; stock hits record low

Ola Electric founder clears ₹260 crore debt via stake sale; stock hits record low

ITC gets CCI nod for Rs3,498-cr acquisition of Aditya Birla Group’s paper and pulp manufacturing business

ITC gets CCI nod for Rs3,498-cr acquisition of Aditya Birla Group’s paper and pulp manufacturing business

IndiGo overtakes Air India Group in international traffic after six-year gap

IndiGo overtakes Air India Group in international traffic after six-year gap

MUFG to bet big on India with $4 billion stake in Shriram Finance

MUFG to bet big on India with $4 billion stake in Shriram Finance

Business History Videos

History of hovercraft Part 3 | Industry study | Business History

History of hovercraft Part 3...

Today I shall talk a bit more about the military plans for ...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of hovercraft Part 2 | Industry study | Business History

History of hovercraft Part 2...

In this episode of our history of hovercraft, we shall exam...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Hovercraft Part 1 | Industry study | Business History

History of Hovercraft Part 1...

If you’ve been a James Bond movie fan, you may recall seein...

By Kiron Kasbekar | Presenter: Kiron Kasbekar

History of Trams in India | Industry study | Business History

History of Trams in India | ...

The video I am presenting to you is based on a script writt...

By Aniket Gupta | Presenter: Sheetal Gaikwad

view more
View details about the software product Informachine News Trackers