Early universe was a hot liquid-like matter, discovers CERN scientists news
07 December 2010

In an experiment to collide lead nuclei together at CERN's Large Hadron Collider physicists from the ALICE detector team including researchers from the University of Birmingham have discovered that the very early Universe was not only very hot and dense but behaved like a hot liquid.

Universe would have behaved like a super-hot liquidBy accelerating and smashing together lead nuclei at the highest possible energies, the ALICE experiment has generated incredibly hot and dense sub-atomic fireballs, recreating the conditions that existed in the first few microseconds after the Big Bang. Scientists claim that these mini big bangs create temperatures of over ten trillion degrees.

At these temperatures normal matter is expected to melt into an exotic, primordial 'soup' known as quark-gluon plasma. These first results from lead collisions have already ruled out a number of theoretical physics models, including ones predicting that the quark-gluon plasma created at these energies would behave like a gas.

Although previous research in the USA at lower energies, indicated that the hot fire balls produced in nuclei collisions behaved like a liquid, many expected the quark-gluon plasma to behave like a gas at these much higher energies.

Scientists from the University of Birmingham's School of Physics and Astronomy are playing a key role in this new phase of the LHC's programme, which comes after seven months of successfully colliding protons at high energies.

Dr David Evans, from the University of Birmingham's School of Physics and Astronomy, and UK lead investigator at ALICE experiment, said: ''Although it is very early days we are already learning more about the early Universe.''





 search domain-b
  go
 
Early universe was a hot liquid-like matter, discovers CERN scientists